
July 2001 www.stsc.hill.af.mil 27

Unlike other engineering disciplines,
software development produces

products of undetermined quality. Testing
is then used to find defects to be correct-
ed. Instead of testing to produce a quality
product, software engineers should design
in quality [1]. The purpose of testing
should not be to identify defects inserted
in earlier phases, but to demonstrate, vali-
date, and certify the absence of defects.

Beginning with the Industrial
Revolution, many technical fields evolved
into engineering fields, but sometimes not
until after considerable damage and loss of
life. In each case, the less scientific, less
systematic, and less mathematically rigor-
ous approaches resulted in designs of inef-
ficient safety, reliability, efficiency, or cost.
Furthermore, while other engineering
practices characteristically attempt to con-
sciously prevent mistakes, software engi-
neering seems only to correct defects after
testing has uncovered them [2].

Many software professionals have
espoused the opinion that there are
“always defects in software [3].” Yet in the
context of electrical, mechanical, or civil
engineering the world has come to expect
defect-free circuit boards, appliances, vehi-
cles, machines, buildings, bridges, etc.

Follow the Basics
All models of the software development
life cycle center upon four phases: require-
ments analysis, design, implementation,
and testing. The waterfall model requires
each phase to act on the entire project.
Other models use the same phases, but for
intermediate releases or individual soft-
ware components.

Software components should not be
designed until their requirements have
been identified and analyzed. Software
components should not be implemented
until they have been designed. Even if a
software component contains experimen-
tal features for a prototype, or contains

only some of the final system’s features as
an increment, that prototype or incremen-
tal software component should be
designed before it is implemented.

Software components cannot be tested
until after they have been implemented.
Defects in software cannot be removed
until they have been identified. Defects are
often injected during requirements analy-
sis or design, but testing cannot detect
them until after implementation. Testing
is therefore inefficient for the detection of
requirements and design defects, and thus
inefficient for their removal.

Testing in the Life Cycle
Burnstein, et al. have developed a Testing
Maturity Model (TMM) [4] similar to the
Capability Maturity Model® [5]. The
TMM states that to view testing as the
fourth phase of software development is at
best Level 2. However, it is physically
impossible to test a software component
until it has been implemented.

The solution to this difference of
viewpoint can be found in TMM Level 3,
which states that one should analyze test
requirements at the same time as analyzing
software requirements, design tests at the
same time as designing software, and write
tests at the same time as implementing
code. Thus, test development parallels
software development. Nevertheless, the
tests themselves can only identify defects
after the fact.

Furthermore, testing can only prove
the existence of defects, not their absence.
If testing finds few or no defects, it is
either because there are no defects, or
because the testing is not adequate. If test-
ing finds too many defects, it may be the
product’s fault, or the testing procedures
themselves.

Branch coverage testing cannot exer-
cise all paths under all states with all pos-
sible data. Regression testing can only
exercise portions of the software, essential-

ly sampling usage in the search for defects.
The clean-room methodology uses

statistical quality certification and testing
based on anticipated usage. Usage proba-
bility distributions are developed to deter-
mine the systems most likely used most
often [6]. However, clean-room testing is
predicated upon mathematical proof of
each software product; testing is supposed
to confirm quality, not locate defects. This
scenario-based method of simulation and
statistically driven testing has been report-
ed as 30 times better than classical cover-
age testing [7].

Page-Jones dismisses mathematical
proofs of correctness because they must be
based on assumptions [8], yet both testing
and correctness verification are done
against the software’s requirements. Both
are therefore based on the same assump-
tions; incorrect assumptions result in
incorrect conclusions. This indictment of
proofs of correctness must also condemn
testing for the same reason.

The Problem with Testing
Norman Hines

JE Sverdrup Naval Systems Group
Testing is inefficient for the detection and removal of requirements and design defects. As a result, lessons learned in
testing can only help prevent defects in the development of subsequent software and subsequent process improvement.
Instead of testing out defects to achieve quality measures, quality should be designed into software. Thus test devel-
opment should parallel the development of the software it tests.

Open Forum

Table 1: TMM Levels

28 CROSSTALK The Journal of Defense Software Engineering July 2001

Open Forum

The clean-room methodology’s rigor-
ous correctness verification approaches
zero defects prior to any execution [9],
and therefore prior to any testing.
Correctness verification by mathematical
proof seems better than testing to answer
the question, “Does the software product
meet requirements?”

Properly done test requirements analy-
sis, design, and implementation that par-
allels the same phases of software develop-
ment may help in early defect detection.
However, done improperly (as when
developers test their own software), this
practice may result in tests that only test
the parts that work, and in software that
passes its tests but nevertheless contains
defects. Increasingly frustrated users insist
that there are serious defects in the soft-
ware, while increasingly adversarial devel-
opers insist that the tests reveal no defects.

Test requirements analysis done sepa-
rately from software requirements analysis
can make successful testing impossible. A
multi-million dollar project was only
given high-level requirements, from which
the software developers derived their own
set of (often-undocumented) lower-level
requirements, to which they designed and
implemented the software. After the soft-
ware had been implemented, a test man-
ager derived his own set of lower-level
requirements, one of which had not even
been considered by the developers. The
design and test requirements were mutual-
ly exclusive in this area, so it was impossi-
ble for the software to pass testing. This
failure scrapped the entire project and
destroyed several careers [10].

Defect Removal and
Prevention
Test-result-driven defect removal is detec-
tive work; the maintenance programmer
must identify and track down the cause
within the software. Defect removal is also
similar to archeology, since all previous
versions of the software, and documenta-
tion of all previous phases of the develop-
ment may have to be researched, if avail-
able. Using testing to validate that soft-
ware is not defective [9], rather than to
identify and remove defects, moves their
removal from detection to comparative
analysis [7].

TMM Level 3 integrates testing into

the software lifecycle. This includes testing
each procedure or module as soon as pos-
sible after each is written. Integration test-
ing is also done as soon as possible after
the components are integrated. Neverthe-
less, the concept of defect prevention is
not addressed until TMM Level 4, and
then only as a philosophy for the entire
testing process.

Testing cannot prevent the occurrence
of defects; it can only aid in the prevention
of their recurrence in future components.
This is why neither CMM nor TMM dis-
cusses actual defect prevention, or more
accurately, subsequent defect prevention
until Level 5. Waiting until one has
reached Level 5 before trying to prevent
defects can be very costly, both in terms of
correcting defects not prevented and in
lost business and goodwill from providing
defective software.

Waiting until implementation to test a
component for defects caused in much
earlier phases seems too much of a delay;
yet, an emphasis in testing for defect pre-
vention is exactly that. An ounce of pre-
vention may be worth a pound of cure,
but one cannot use a cure as if it were a
preventative.

There are several methods currently
available to accomplish defect prevention
at earlier levels of maturity such as
Cleanroom Software Engineering [9],
Zero Defect Software [11], and other
provably correct software methods [2, 12].

Software Quality and Process
Improvement
Gene Krinz, Mission Operations’ director
for the NASA space shuttle, is quoted as
saying about the quality of the flight soft-
ware, “You can’t test quality into the soft-
ware [11].” Clean-room methods teach
that one can neither test in nor debug in
quality [9].

If quality was not present in the
requirements analysis, design, or imple-
mentation, testing cannot put it there.
One of TMM’s Level 3 maturity goals is
software quality evaluation. While many
quality attributes may be measured by
testing, and many quality goals may be
linked to testing’s ultimate objectives,
most aspects of software quality come
from the quality of its design.

Procedure coupling and cohesion

[13], measures of object-oriented design
quality such as encapsulation, con-
nascence, encumbrance, class cohesion,
type conformance, closed behavior [8],
and other quantitative measures of soft-
ware quality, are established in the design
phase. They should be measured soon
after each component is designed; do not
wait until after implementation to meas-
ure them with testing.

Some authors have suggested that ana-
lyzing, designing, and implementing tests
in parallel with the products to be tested
will somehow improve the processes used
to develop those products. [3] However,
since the software product testers should
be different from those who developed it,
there needs to be some way for the testers
to communicate their process improve-
ment lessons learned to the developers.
Testers and developers should communi-
cate effectively; every developer should
also act as a tester (but only for compo-
nents developed by others).

Designing in Quality
One of the maturity subgoals of subse-
quent defect prevention is establishing a
causal analysis mechanism to identify the
root causes of defects. Already there is evi-
dence that most defects are created in the
requirements analysis and design phases
[11]. Some have put the percentage of
defects caused in these two phases at 70
percent [3].

Clear communication and careful
documentation are required to prevent
injecting defects during the requirements
analysis phase. Requirements are charac-
teristically inconsistent, incomplete,
ambiguous, nonspecific, duplicate, and
inconstant. Interface descriptions, proto-
types, use cases, models, contracts, pre-
and post-conditions, etc. are all useful
tools.

To prevent injecting defects during
the design phase, software components
must never be designed until a large part
of their requirements have been identified
and analyzed. The design should be thor-
ough, using such things as entities and
relationships, data and control flow, state
transitions, algorithms, etc. Peer reviews,
correctness proofs and verifications, etc.
are good ways to demonstrate that a
design satisfies its requirements.

July 2001 www.stsc.hill.af.mil 29

Preventing the injection of defects dur-
ing the implementation phase requires that
software components never be implement-
ed until they have been designed. It is far
too easy to implement a software compo-
nent while the design is still evolving, some-
times just in the developer’s mind. Poor
documentation and a lack of structure in
the code usually accompany an increased
number of defects per 100 lines of code [3].
As I mentioned earlier, this applies even to
prototype and incremental software com-
ponents; those experimental or partial fea-
tures should be designed before implemen-
tation.

The clean-room method has an excel-
lent track record of near defect-free software
development, as documented by the
Software Technology Support Center, Hill
AFB, Utah, regardless of Daich’s statements
to the contrary [3]. Clean-room is compat-
ible with CMM Levels 2 through 5 [9], and
can be implemented in phases at all these
levels [6].

Conclusion
It is my dream that software engineering will
become as much of an engineering disci-
pline as the others; users will have just as
much confidence that their software is as
defect free as their cars, highway bridges,
and aircraft.

Testing should be used to demonstrate
the absence of defects, not to identify defects
inserted in earlier phases. It should be used
to certify that the software components
implement their designs, and that these
designs satisfy their requirements.
Analyzing testing requirements should be
done in parallel with analyzing the software
components’ requirements. Tests should be
designed in parallel with designing the com-
ponents. Test implementation should occur
in parallel with implementing the compo-
nents, and developing integration tests
should be done in parallel with integration.

The source of software defects is a lack
of discipline in proper requirements analy-
sis, design, and implementation processes.
Testing must physically occur after imple-
mentation, so reliance on it to detect
defects delays their correction. Until soft-
ware defects are attacked at their source,
software will continue to be developed as if
it were an art form rather than a craft, engi-
neering discipline, or a science.u

References
1. Humphrey, W. S., Making Software

Manageable, CrossTalk, December
1996, pp. 3-6.

2. Baber, R. L., The Spine of Software:
Designing Provably Correct Software:
Theory and Practice, John Wiley &
Sons Ltd., Chichester, United
Kingdom, 1987.

3. Daich, G. T., Emphasizing Software
Test Process Improvement,
Crosstalk, June 1996, pp. 20-26,
and Daich, Gregory T., Letters to the
Editor, CrossTalk, September
1996, pp. 2-3, 30.

4. Burnstein, I.; Suwannasart, T.; and
Carlson, C.R., Developing a Testing
Maturity Model: Part I, CrossTalk,
August 1996, pp. 21-24; Part II,
CrossTalk, September 1996, pp.
19-26.

5. Paulk, M. C.; Curtis, B.; Chrissis, M.
B.; and Weber, C. V., Capability
Maturity ModelSM for Software, Version
1.1, Software Engineering Institute,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, February
1993.

6. Hausler, P. A.; Linger, R. C.; and
Trammel, Adopting Cleanroom
Software Engineering with a Phased
Approach, IBM Systems Journal, vol-
ume 33, number 1, 1994, p. 95.

7. Bernstein, L.; Burke Jr., E. H.; and
Bauer, W. F., Simulation- and
Modeling-Driven Software Devel-
opment, CrossTalk, July 1996, pp.
25-27.

8. Page-Jones, M., What Every
Programmer Should Know About
Object-Oriented Design, Dorset House
Publishing, New York, New York,
1995.

9. Linger, R.C., Cleanroom Software
Engineering: Management Overview,
Cleanroom Pamphlet, Software
Technology Support Center, Hill Air
Force Base, Utah, April 1995.

10. Unpublished CMM Tutorial, inform-
ation withheld to protect the people
involved.

11. Schulmeyer, G. G., Zero Defect
Software, McGraw-Hill, Inc., New
York, New York, 1990.

12. Martin, J., System Design from Provably
Correct Constructs, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1985.
13. Page-Jones, M., The Practical Guide to

Structured Systems Design, second edi-
tion, Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

The Problem With Testing

About the Author
NNoorrmmaann HHiinneess is a soft-
ware developer for JE
Sverdrup, working at the
Naval Air Warfare
Center, China Lake,
Calif. He is currently

working on projects that integrate
weapon simulation systems with actual
range data in real time and post mission.
He has more than 20 years experience in
software development, as well as a bach-
elor's degree in mathematics and busi-
ness administration from University of
Wisconsin–Platteville, a master’s degree
in business administration from
University of Michigan, and a master’s
degree in computer science from
California State University, Chico.

JE Sverdrup Naval Systems Group
900 N. Heritage Dr.
Ridgecrest, CA 93555
Phone: (760) 939-9460
E-mail: nwsverdrup@navair.navy.mil

“Let us change our
traditional attitude to
the construction of

programs. Instead of
imagining that our

main task is to instruct
a computer what to do,

let us concentrate
rather on explaining to
human beings what we

want a computer

to do.”
– Donald Knuth

